
Nonlinear Gyroviscous Force in a

Collisionless Plasma

E. V. Belova

PPPL



Motivation:

• calculate FLR corrections to pressure tensor

in terms of particle distribution function

• no closure relation is assumed, no truncation

using gyrokinetic formalism:

advantage: reduced phase-space (5D),

expanded in ρ/L already



Gyrokinetic ordering:

ε =
ρi

L
∼ ω

ωci
∼ k‖

k⊥
, εδ =

δF

F
∼ eϕ

T
,

ε ∼ εδ � 1

ε⊥ = (k⊥ρ)2 ∼ 1

Assumptions:

• electrostatic, straight B

• second order in ε and εδ

• ε⊥ = (k⊥ρ)2 � 1



Previous work:

• Braginskii gyroviscosity

collisional ordering [Braginskii’65]

neglects gradients of heat fluxes in (∇· πg)

• Fluid calculations

[Hazeltine and Meiss’85, Chang and Callen’92, Smolyakov’98],

include higher order terms (in ε), heat fluxes

• Gyrofluid calculations

[Brizard’92, Dorland and Hammet’92]

gyrokinetic Vlasov equation is used to derive a set of reduced

gyrofluid (and particle fluid) FLR equations

• For ∇T 6= 0 all give different answers!
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Gyrokinetic formalism

Gyrokinetic Vlasov equation (up to O(ε2)):

[Dubin’83]

∂F

∂t
+


b̂U +

1

B
b̂×∇〈Φ〉


 · ∇F − b̂ · ∇〈Φ〉 ∂F

∂U
= 0

Z̄ ≡ (X, U, µ, θ) - gyrocenter coordinates,

F = F (X, U, µ) - gyrocenter distribution function.

Φ = ϕ− 1

2B

∂ ϕ̃2

∂µ
+

1

2B2
b̂ · ∇Ψ̃ ×∇ ϕ̃,

ϕ̃= ϕ− 〈ϕ〉, Ψ̃=
∫ θ

ϕ̃ dθ′



Relation between gyrocenter and guiding-center

variables (I)

• First order transformation (in εδ):

Z̄j(Z) = Zj + Gj
1,

where components of generating vector are (n =1 or 2):

Gn = −b̂∂Sn/∂U − 1
B
b̂×∇Sn

GU
n = ∇‖Sn

Gµ
n = ∂Sn/∂θ

Gθ
n = −∂Sn/∂µ

and S1 is a gauge function for the first order transformation

[Cary and Littlejohn’83]

∂S1

∂t
+ U∇‖S1 + B

∂S1

∂θ
=ϕ̃

S
(1)
1 =

1

B
Ψ̃ +O(ε2)

S
(2)
1 = − 1

B2

∫ θ

∂ Ψ̃

∂t
+ U ∇‖Ψ̃


 dθ ′ + O(ε3)



Relation between gyro-center and guiding-center

variables (II)

• Second order transformation (in εδ):

Z̄j(Z) = Zj + Gj
1 +

1

2
Gi

1

∂Gj
1

∂Zi
+ Gj

2 + O(ε3),

S2 is a gauge function for the second order transformation:

B
∂S2

∂θ
= −G1 · ∇ϕ̄−Gµ

1

∂ϕ̄

∂µ
− 1

2


(G1 · ∇ ϕ̃) + Gµ

1

∂ ϕ̃

∂µ
+ Gθ

1

∂ϕ

∂θ




+
1

2


〈G1 · ∇ ϕ̃〉 + 〈Gµ

1

∂ ϕ̃

∂µ
〉 + 〈Gθ

1

∂ϕ

∂θ
〉




• Guiding-center distribution function Fgc can be expressed in terms

of the gyrocenter distribution function, F

Fgc(z) = F (Z(z))



General gyro-fluid moment equation

Gyro-fluid (GF) moment is defined as:

Mkl(X, t) ≡ ‖µkUl‖GF =
∫

µkUlFdµdU

From gyrokinetic Vlasov equation up to O(ε2), O(ε⊥) order,

for l - even:

d′Mkl

dt
+ ∇‖Mkl+1 +

1

2B2

{
∇2

⊥ϕ, Mk+1l

}
= 0

for l - odd:

d′Mkl

dt
+ ∇‖ (Mkl+1 + lMkl−1ϕ) +

1

2B2

{
∇2

⊥ϕ, Mk+1l

}

+
1

2B
lMk+1l−1∇‖∇2

⊥ϕ = 0

where

d′

dt
≡ ∂

∂t
+ (VE · ∇), {f, g} ≡ b̂ · ∇f ×∇g



Relation between gyrofluid and particle-fluid moments

General particle-fluid (PF) moment:

mkl(x, t) ≡ ‖µkUl‖PF =
∫
(v2
⊥/2B)k(v‖)l f d3v

mkl in terms of guiding-center distribution function, Fgc:

mkl(x, t) =
∫

µkUl Fgc(Z) δ(X + ρ− x) d6Z

Gyrokinetic transformation (needed up to O(ε)):

Fgc(Z) = Tgy(F ) = F + G1 · ∇F + Gµ
1∂F/∂µ + GU

1 ∂F/∂U

Substituting Fgc and Gj
1, one can express PF moment in terms of

GF moments (O(ε⊥)):

mkl(x, t) =


Mkl +

1

2B
∇2

⊥Mk+1l +
(k + 1)

B2
Mkl∇2

⊥ϕ


 (x, t)

with O(ε⊥) accuracy, the inverse:

Mkl(X, t) =


mkl − 1

2B
∇2

⊥mk+1l − (k + 1)

B2
mkl∇2

⊥ϕ


 (X, t)



General particle-fluid moment equation

Expressing GF moments in terms of the PF moments in the gyro-

fluid set of equations, one can obtain with O(ε2) and O(ε⊥) accuracy

for l - even:

d′mkl

dt
= −∇‖mkl+1+mkl(k+1)

d′

dt
∇2

⊥ϕ/B2−∇⊥·{∇⊥ ϕ, mk+1l}/B2

for l - odd:

d′mkl

dt
= −∇‖mkl+1 − lmkl−1∇‖ϕ−∇⊥ · {∇⊥ ϕ, mk+1l}/B2

+
[
(k + 1)mkl+1/B

2 − lmk+1l−1/B
]
∇‖∇2

⊥ϕ

where d′/dt = ∂/∂t + (vE · ∇).

Note that particle-fluid equations exhibit a generalized form of “gy-

roviscous cancellation” (a cancellation of (v∗ ·∇) term from the total

time derivative on LHS).



Example: nonlinear reduced fluid equations O(ε2)

n = ‖1‖PF = m00, nv‖ = ‖U‖PF = m01,

p⊥ = ‖Bµ‖PF = Bm10, p‖ = ‖U2‖PF = m02, . . .

d′n
dt

= − ∇‖ (nv‖) +
n

B2

d′

dt
∇2

⊥ϕ− ∇⊥ ·{∇⊥ ϕ, p⊥}/B3

d′p⊥
dt

= − ∇‖ ‖UµB‖ +
2p⊥
B2

d′

dt
∇2

⊥ϕ− ∇⊥ ·{∇⊥ ϕ, ‖µ2‖}/B

d′p‖
dt

= − ∇‖ ‖U3‖+
p‖
B2

d′

dt
∇2

⊥ϕ− ∇⊥ ·{∇⊥ ϕ, ‖U2µ‖}/B2

n
d′v‖
dt

= − ∇‖ (p‖ + nϕ)− ∇⊥ ·{∇⊥ ϕ, ‖Uµ‖}/B2 +
p‖ − p⊥

B2
∇‖ ∇2

⊥ϕ

where

‖Uµ‖B = p⊥v‖ + q
(⊥)
‖ , ‖U3‖ = 3p‖v‖ + 2q

(‖)
‖ ,

‖µ2‖B2 =
2p2

⊥
n

+ 2R⊥, ‖U2µ‖B =
p⊥p‖

n
+ R×



Parallel momentum equation, (∇· πg)‖

From FLR parallel momentum equation, one can find parallel com-

ponent of gyroviscous force (in terms of PF moments):

n
d′v‖
dt

= − ∇‖ (p‖ + nϕ)− ∇⊥ ·{∇⊥ ϕ, ‖Uµ‖}/B2 +
p‖ − p⊥

B2
∇‖ ∇2

⊥ϕ

n
dv‖
dt

= − ∇‖ p‖− (∇· πg)‖ −n ∇‖ ϕ,

where πg is defined by: P = PCGL+ πg +ρvv

(∇· πg)‖= −(nv∗ · ∇)v‖ +
1

B2
∇⊥ ·{∇⊥ ϕ, ‖Uµ‖}

− p‖ − p⊥
B2

∇‖ ∇2
⊥ϕ

- Parallel momentum equation agrees with direct fluid calculations

of [Smolyakov’98] for p
(0)
⊥ = p

(0)
‖ .

- extra terms ∼ δT and parallel vorticity terms [Brizard’92, Chang

and Callen’92] are cancelled out, when parallel heat fluxes contribu-

tion is consistently retained.



“Perpendicular momentum equation”, (∇· πg)⊥

Nonlinear reduced fluid equations can be derived by taking moments

of the gyrokinetic Vlasov equation, and expressing them in terms of

the particle-fluid moments. Accuracy of O(ε) is required.

Perpendicular component of momentum equation can not be derived

in the same way (moment of
∫
V⊥F dUdµdθ vanishes). It can be

recovered, when nv⊥(x, t) is expressed via moments of the gyro-

center distribution function F through the second order in ε and

εδ.

From

n
dv⊥
dt

= − ∇⊥ p⊥− (∇· πg)⊥ +n(E⊥ + v×B),

follows:

v
(0)
⊥ = v∗ + vE

v⊥ = v∗ + vE +
1

nB
b̂× (∇· πg) +

1

B
b̂× dv

(0)
⊥

dt︸ ︷︷ ︸
O(ε2)

where v∗ = b̂×∇p⊥/(nB), and d/dt = ∂/∂t + v
(0)
⊥ · ∇.

If particle-fluid velocity nv⊥ =
∫
V⊥f d3V is calculated up to the

second order, the perpendicular component of gyroviscous force can

be found.



Calculation of nv⊥ (I)

nv⊥(x, t) ≡
∫
w⊥f (w,x, t) d3w =

∫
V⊥Fgc δ(X + ρ− x) d6Z

where the guiding-center distribution function, Fgc, can be expressed

via gyro-center distribution function, F , up to the second order:

Fgc = F + Gj
1
∂F

∂Zj
+

1

2
Gj

1
∂

∂Zj


Gi

1

∂F

∂Zi


 + Gj

2
∂F

∂Zj

Keeping all nonlinear terms ∼ O(ε2, εεδ, ε
2
δ) and O(ε⊥), we obtain:

nv⊥ =
1

B
b̂×∇P⊥ + NVE +

1

4B
b̂×∇(∇⊥2 ‖µ2‖)

− 3

2B
b̂×∇χ⊥ − N

B2


 ∂

∂t
+ V∗ · ∇


 ∇⊥ ϕ

+
1

B3
b̂×∇(∇⊥ P⊥· ∇⊥ ϕ) +

1

2B2
VE(∇⊥2 P⊥)

+
N

2B3
b̂×∇(∇⊥ ϕ)2

where RHS is written in terms of the gyro-fluid moments, and

NV∗ = b̂×∇P⊥/B, and χ⊥ = −(P⊥/B) b̂ · ∇ ×VE.



Calculation of nv⊥ (II)

In terms of particle-fluid moments nv⊥ becomes:

nv⊥ = n(v∗ + vE)− 1

4B
b̂×∇(∇⊥2 ‖µ2‖) +

1

2B
b̂×∇χ⊥

− n

B2

d

dt
∇⊥ ϕ +

1

2nB3
b̂×∇(∇⊥ p⊥)2

Therefore,

(∇· πg)⊥= −n
dv∗
dt

+ ∇⊥ χ̃

From FLR fluid equation for p⊥, it can be shown that

dv∗
dt

= (v∗ · ∇)v⊥ − 1

n
b̂×∇(∇‖ ‖Uµ‖)

which allows to write the perpendicular gyroviscous force in [Chang

and Callen’92] form, as:

(∇· πg)⊥= −n(v∗ · ∇)v⊥ + b̂×∇(∇‖ ‖Uµ‖)+ ∇⊥ χ̃

where

χ̃ ≡ 1

2
χ⊥ − 1

4
∇⊥2 ‖µ2‖ +

1

2nB2
(∇⊥ p⊥)2



RESULTS (PF)

For πg defined by: πg= P − PCGL − ρvv, in terms of PF mo-

ments, we have calculated up to second order in ε and εδ, and up to

O((k⊥ρi)
2):

(∇· πg)‖ = −(nv∗ · ∇)v‖ +
1

B2
∇⊥ ·{∇⊥ ϕ, ‖Uµ‖} (1)

−p‖ − p⊥
B2

∇‖ ∇2
⊥ϕ

(∇· πg)⊥ = −(nv∗ · ∇)v⊥ + b̂×∇(∇‖ ‖Uµ‖)+ ∇⊥ χ̃ (2)

or

= −n
dv∗
dt

+ ∇⊥ χ̃ (3)

For Maxwellian f : χ̃ = − p⊥
2B

b̂ · ∇ × v⊥ − 1
2B2 ∇⊥ ·(p⊥ ∇⊥ T⊥).

Note that two forms (2) and (3) of perpendicular gyroviscous force

are obtained, which are related by the equation for p⊥.

For ∇⊥ T⊥ = 0, these two expressions are equivalent to that of

[Chang and Callen’92] and [Hazeltine and Meiss, 1985], respectively.

For δT⊥ = δT‖, our results agree with calculations by Smolyakov

[1998].



Gyroviscous stress tensor in terms of F

(FLR particle closure)

GF gyroviscous stress tensor defined as:

Πg = P− P⊥(I − b̂b̂) − P‖b̂b̂

it is related to πg

Πg = πg + ρVV +
(
p⊥ − P⊥ − ρV 2

⊥/2
)
(I− b̂b̂)

+
(
p‖ − P‖ − ρV 2

‖
)
b̂b̂

where p⊥(‖) and P⊥(‖) are PF and GF pressure, respectively.

Expressing particle-fluid moments in terms of gyrofluid moments:

(∇ ·Πg) = (nVE · ∇)V + b̂×∇
(
∇‖‖µU‖

)

+ ∇⊥
(
∇2

⊥‖µ2‖/4− 3χ⊥/2 + nV∗ ·VE

)

+ ∇‖
(
∇2

⊥‖U2µ‖/2B − χ⊥
)

+ b̂
(
∇⊥·{∇⊥ϕ , ‖Uµ‖}+ {ϕ ,∇2

⊥‖Uµ‖}/2
)
/B2

where

χ⊥ = −P⊥
B

b̂ · ∇ ×VE, ‖ ∗ ‖ =
∫
(∗)F dUdµ,



Summary

FLR corrections to the ion stress tensor have been derived through

O(ε⊥) order, and can be used both in kinetic and fluid calculations.

• FLR corrections are calculated using gyrokinetic approach.

• Kinetic expression for (∇ ·Πg) allows to include higher order FLR

corrections into numerical models with so-called particle closure - it

is more accurate than usual drift-kinetic and cheaper than the gy-

rokinetic schemes.

• A set of nonlinear FLR reduced fluid equations has been obtained

in a general form.

• Previous calculations of (∇· πg) for T 6= const have been cor-

rected. Our results are in general agreement with the direct fluid

calculations by Smolyakov [1998].

• Disagreement between the previous direct fluid and gyrofluid cal-

culations of (∇· πg)‖ has been resolved.


